Influence of Scleral Lens on Intraocular Pressure

Main Article Content

A. Philip Aitsebaomo
Jeannette Wong-Powell
William Miller
Farshid Amir

Keywords

Abstract

Purpose


Since Scleral Lenses (SL) rest entirely on the sclera and may affect underlying anatomical structures that may influence aqueous humor flow, it is important to determine the effect of SL wear on intra-ocular pressure (IOP).


 


Methods


Nine subjects with normal corneas were recruited for an Institutional Review Board-approved study. Best fit SL from a 15.8 mm diameter 0.4mm thick diagnostic-lens set was fitted on a randomly selected eye, with a silicone-hydrogel soft lens (soft lens) on the other eye. Three IOP measurements were taken with rebound iCare tonometer prior to lens application (baseline data measured at about 9:30AM), and immediately after lens removal (final data measured at about 5:30PM). Baseline and final lens vault was determined with anterior segment Zeiss optical coherence tomography (OCT). Mean baseline and final IOP for each eye was analyzed with a Student-t-test, 2-way repeated ANOVA, and the Bland-Altman plot.


 


RESULTS


IOP was elevated with SL wear for all subjects. Soft lens eyes showed a slight elevation for some but decreased in others. Mean IOP change was 5.81 ± 1.62 mm Hg for SL and -0.62 ± 0.88 mm Hg for soft lens eyes. When mean IOP in SL eyes was compared to soft lens eyes, unpaired t-test showed a significant difference (p <0.05) between the means. Bland-Altman bias was 6.43 (SD of bias 3.139). Repeated ANOVA also showed a significant difference between baseline and final IOP.


 


CONCLUSIONS


The results indicate that SL wear can elevate IOP. Eye care practitioners (ECP) must consider this possible outcome in treating patients wearing SL. Additional studies are needed to determine the clinical implications of SL wear on IOP.

Downloads

Download data is not yet available.
Abstract 1031 | pdf Downloads 330

References

1. Heine L. Uuml;ber den Ausgleich sämtlicher Brechnngsfehler des Auges durch geschliffene Haftgläser. Münch. med. Woch., lxxvii., 6 (1930) 271.
2. Huggert A. Increase of the intraocular pressure when using contact glasses. Acta Ophthalmol 1951;29(4):475–81.
3. Huggert A. The intraocular pressure in glaucomatous eyes following the use of contact lenses. Acta Ophthal-
mol 1953;31(2):141–52.
4. Shuley V, Ferguson L, Muller S, et al. Contact lens prescribing patterns. Austr Optom - Contact Lens Supplement1999;(12):2–3.
5. Thite N, Noushad B, Kunjeer G. Contact lens prescrib-ing pattern in India—2011. Contact Lens Anterior Eye 2013;36(4):182–85
6. Efron N, Nichols J, Woods J, et al. Trends in US Con-tact Lens Prescribing 2002 to 2014. Optom Vis Sci 2015;92(7):758–67.
7. Vincent S. The rigid lens renaissance: A surge in scler-als. Cont Lens Ant Eye 2018;41(2):139–43.
8. Efron N. The demise of rigid contact lenses. Optom Today 2001;41(19)22–25.
9. Efron N. This expert predicts the demise of RGPs by the year 2010. Optician 1998;216(5676):15.
10. van der Worp E. The prognosis of GP lenses. What GP decline? Cont Lens Spect 2009;(8):24.
11. Bennett E. Gas permeable lenses are alive and well in 2010. Cont Lens Ant Eye 2011;34(2):95–96.
12. Bergmanson J, Barnett M, Naroo S. Scleral gas per-meable lenses have come of age. Cont Lens Ant Eye 2016;39(4):247–87.
13. van der Worp E. Scleral lenses (are) special. Contact Lens Anterior Eye 2017;40:271–72.
14. Pullum K, Whiting M, Buckley R. Scleral contact lenses: The expanding role. Cornea 2005;24(3):269–77. 15. Segal O, Barkana Y, Hourovitz D, et al. Scleral contact lenses may help where other modalities fail. Cornea
2003;22(4):308–10.
16. Kok J, Visser R. Treatment of ocular surface disorders
and dry eyes with high gas-permeable scleral lenses. Cornea 1992;11(6):518–22.
17. Takahide K, Parker P, Wu M. Use of fluid-ventilated, gas-permeable scleral lens for management of severe keratoconjunctivitis sicca secondary to chronic graft-versus-host disease. Biol Blood Marrow Transplant 2007;13(9):1016–21.
18. Jacobs D, Rosenthal P. Boston scleral lens prosthetic device for treatment of severe dry eye in chronic graft-versus-host disease. Cornea 2007;26(10)26:1195–99.
19. Theophanous C, Irvine J, Parker P, Chiu G. Use of prosthetic replacement of the ocular surface ecosystem scleral lenses in patients with ocular chronic graft-versus-host disease. Biol Blood Marrow Transplant 2015;21(12):2180–84.
20. Schornack M, Baratz K, Patel S, Maguire L. Jupiter scleral lens in the management of chronic graft versus host disease. Eye Contact Lens 2008;34(6):302–305.
21. Thompson R Jr., Price M, Bowers P, Price F Jr. Long-term graft survival after penetrating keratoplasty. Ophthalmol 2003;110(7):1396–402.
22. Westeneng A, Hettinga Y, Lokhorst H, et al. Ocular graft-versus-host disease after allogeneic stem cell transplantation. Cornea 2010;29(7):758–63.
23. Jabbur N, Stark W, Green W. Corneal ectasia after laser-assisted in situ keratomileusis. Ophthalmol 2003;110(7):1396–402.
24. Lafond G, Bazin R, Lajoie C. Bilateral severe kera-toconus after laser in situ keratomileusis in a patient with forme fruste keratoconus. J Cataract Refract Surg 2001;27(7):1115–118.
25. Joo C, Kim T. Corneal ectasia detected after laser in situ keratomileusis for correction of less than -12 diopters of myopia. J Cataract Refract Surg 2000;26(2):292–95.
26. McMonnies C. A hypothesis that scleral contact lenses could elevate intraocular pressure. Clin Exp Optom 2016;99(6):594–96.
27. Vincent S, Alonso-Caneiro D, Collins M. Evidence on scleral contact lenses and intraocular pressure. Clin Exp Optom 2017;100(1):87–88.
28. A. Aitsebaomo, J. Wong-Powell, W. Miller, A. Farshid, Effect of scleral Lens Wear on intraocular
pressure, Available from: (2018) https:// ep70.eventpilot.us/web/ page.php?nav=false&page=IntHtml&project=ARVO 18&id=2923528.
29. Michauda L, Samahaa D, Giassona C. Intra-ocular pressure variation associated with the wear of scleral
lenses of different diameters. Contact Lens Anterior Eye 2019;42(1):104–110.
30. Otchere H, Jones L, Sorbara L. Effect of time on scleral lens settling and change in corneal clearance. Optom Vis Sci 2017;94(9):908–13.
31. Esen F, Fehim E. Influence of apical clearance on mini-scleral lens settling, clinical performance, and corneal thickness changes. Eye Contact Lens 2017;43(7):230–35.
32. Vincent S, Alonso-Caneiro D, Collins M. The temporal dynamics of miniscleral contact lenses: Central corneal clearance and centration. Contact Lens Anterior Eye 2018;41(2):162–68.
33. Kauffman M, Gilmartin C, Bennett E, Bassi C. A com-parison of the short-term settling of three scleral lens designs. Optom Vis Sci 2014;91(12):1462–66.
34. Funk R, Gehr J, Rohen J. Short-term hemodynamic changes in episcleral arteriovenous anastomoses cor-relate with venous pressure and IOP changes in the albino rabbit. Curr Eye Res 1996;15(1):87–93.
35. Nau C, Schornack M, McLaren J. Intraocular pressure after 2 hours of small diameter scleral lens wear. Eye Contact Lens 2016;42(6):350–53.
36. Korszen E, Caroline P, Kinoshita B, Lampa M, Does scleral lens wear influence intraocular pressure? Poster-GSLS; 2017. Does-Scleral-Lens-Wear-Influence-IOP. pdf.aspx
37. Martinez-de-la-Casa J, Garcia-Feijoo J, Castillo A, Garcia-Sanchez J. Reproducibility and clinical evalu-ation of rebound tonometry. Invest Ophthalmol Vis Sci 2005;46(12):4578–80.
38. Kontiola A. A new induction-based impact method for measuring intraocular pressure. Acta Ophthalmol Scand 2000;78(2):142–45.
39. Vincent S, Vincent R, Shields D, Lee G. Comparison of intraocular pressure measurement between rebound, non-contact and Goldmann applanation tonometry in treated glaucoma patients. Clin Exp Ophthalmol 2012;40(4):163–70.
40. Kato Y, Nakakura S, Matsuo N, et al. Agreement among Goldmann applanation tonometer, iCare, and Icare PRO rebound tonometers; non-contact tonometer; and Tonopen XL in healthy elderly subjects. Int Ophthalmol 2018;38(2):687–96.
41. Braun DA, Anderson Penno EE. Effect of contact lens wear on central corneal thickness measurements. J Cataract Refract Surg 2003;29(7):1319–22.
42. Millodot M. Effect of hard contact lenses on cor-neal sensitivity and thickness. Acta Ophthalmol 1975;53(4):53:576–84.
43. Doughty M, Zaman M. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 2000;44(5):367–408.
44. Neuburger M, Maier P, Böhringer D, Reinhard T, Jordan J. The impact of corneal edema on intraocular pressure; measurements using Goldmann applanation tonometry, Tono-Pen XL, iCare, and ORA. J Glaucoma 2013;22(7):584–90.
45. Poostchi A, Mitchell R, Nicholas S. The Icare rebound tonometer: Comparisons with Goldmann tonometry, and influence of central corneal thickness. Clin Exp Ophthalmol 2009;37(7):687–91.
46. Martinez-de-la-Casa J, Jimenez-Santos M, Saez-Frances F. Performance of the rebound, noncontact and Goldmann applanation tonometers in routine clinical practice. Acta Ophthalmol 2009;10(9):1755–68.
47. Iliev M, Goldblum D, Katsoulis K. Comparison of re-bound tonometry with Goldmann applanation tonometry and correlation with central corneal thickness. Br J Ophthalmol 2006;90(7):833–35.
48. Bayer S, Akman A, Çentinkaya A, Yaman E. Clinical comparison of rebound tonometer with Goldmann ap-planation tonometer: effects of central corneal thickness. Glokom-Katarakt 2012;7(3):177–83.
49. Sorbara L, Maram J, Simpson T, Hutchings N. Corneal, conjunctival effects and blood flow changes related to silicone hydrogel lens wear and their correlations with end of day comfort. Contact Lens Anterior Eye 2018;41(2):193–200.
50. Blondeau P, Tétrault J, Papamarkakis C. Diurnal vari-ation of episcleral venous pressure in healthy patients: a pilot study. J Glaucoma 2001;10(1):18–24.
51. Friberg T, Sanborn G, Weinreb R. Intraocular and epis-cleral venous pressure increase during inverted posture. Am J of Ophthmol 1987;103(4):523–26.
52. Kupfer C, Sanderson P. Determination of pseudofacility in the eye of man. Arch Ophthalmol 1968;80(2):194–96. 53. Phelps C. The pathogenesis of glaucoma in Sturge-Weber
syndrome. Ophthalmol 1978;85(3):276–86.